

Typical Features

- Wide input voltage range 9 : 1
- > Efficiency up to 90%
- Low no-load power consumption
- ➤ Operating temperature from -40°C to +105°C
- High isolation voltage 3000VAC(input-output) & 2100VAC(input-case)
- Input under voltage protection, output over voltage, short circuit, over current and over temp protections
- Standard 1/4 brick size

ZCD60-110S12A is a high-performance DC-DC modular converter with rated input voltage 110VDC (full range from 18V to 160VDC), regulated single output 12V/60W without minimum load limit. It has the advantage of high isolation voltage, Max operating temperature up to 105°C, with input under-voltage protection, output over-current, over-voltage, over-temperature and short circuit protections, input ON/OFF control, output voltage distal end compensation and output voltage Trim, etc.

Typical Product List							
5	Input voltage	Output	Output	Output	Ripple &	Full load	5
Part No.	range	power	voltage	current	Noise	efficiency (%)	Remarks
	(VDC)	(W)	(VDC)	(A)	(mVp-p)	Min/Typ.	
ZCD60-110S12AC							Standard
20000-110312AC					120 88/90		Positive logic
ZCD60-110S12AN							Standard
2000-110312AN	18 - 160	60	12	5		88/00	Negative logic
ZCD60-110S12AC-H		10 - 100 00	12	3		00/90	Heatsink
ZCD60-110S12AC-I1							Positive logic
							Heatsink
							Negative logic

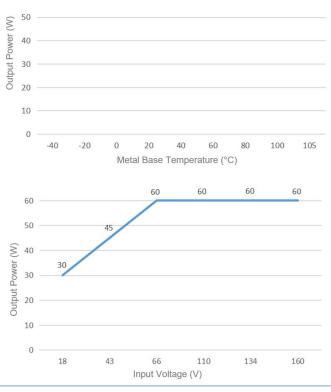
Note: The output power should be derated linearly when the input is within the range of 18-66V, the maximum output power is 30W at 18V input.

Input Specifications					
Item	Operating conditions Min. Typ. Max.		Max.	Unit	
Max input current	Input voltage 18V, output 30W			3	А
No load input current	Rated input voltage			20	mA
Input Inrush voltage (1sec. max.)	The unit could be permanently damaged by input over this Voltage	-0.7		185	
Start-up voltage				18	VDC
Under voltage protection	With No-load (over current protection will work in advance at full load)			16	
	Positive logic: CNT no connection or connected to 3.5-15V to turn ON, connected to				
ON/OFF Control (CNT)	0-1.2V to turn OFF the converter	Reference			
ON/OFF Control (CNT)	Negative logic: CNT no connection or connected to 3.5-	voltage -Vin			
	0-1.2V to turn ON the converter				

Output Specifications					
Item	Operating conditions	Min.	Тур.	Max.	Unit
Output voltage accuracy	Nominal input voltage, 0% -100% load		±0.2	±1.0	
Line regulation	Full load, input voltage from low to high		±0.2	±0.5	%
Load regulation	Nominal input voltage, 10%-100% load		±0.2	±0.5	
Transient recovery time	250/ lead star sharms (star rate 1A/50:4C)		200	250	uS
Transient response deviation	25% load step change (step rate 1A/50uS)	-5		+5	%
Temperature drift coefficient	Full load	-0.02		+0.02	%/°C
Ripple & Noise	20M bandwidth, test with external capacitor >220uF		100	120	mVp-p
Output voltage adjustment (TRIM)		-20		+10	%
Output voltage distal end compensation (Sense)				105	%
Over temperature protection	Maximum temperature of the metal base	105	115	125	°C
Over voltage protection		125		140	%
Over current protection		5.5		7.5	А
Short circuit protection		Hie	ccup, contir	nuous, self-ı	ecovery

General Specifications						
Item	Operating of	Operating conditions		Тур.	Max.	Unit
	I/P-O/P	Test 1min, leakage current <3mA	3000			VAC
Isolation voltage	I/P-Case	Test 1min, leakage current <3mA	2100			VAC
	O/P-Case	Test 1min, leakage current <3mA	500			VAC
Insulation resistance	I/P-O/P	@ 500VDC	100			ΜΩ
Switching frequency				210		KHz
MTBF			150			K hours

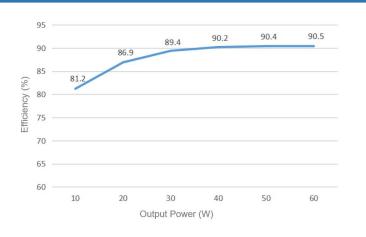
Environmental characteristics						
Item	Operating conditions	Min.	Тур.	Max.	Unit	
Operating temperature	Refer to the temperature derating graph	-40		+105	$^{\circ}\mathrm{C}$	
Storage humidity	No condensing	5		95	%RH	
Storage temperature		-40		+125		
Pin soldering temperature	1.5mm from the case, soldering time <1.5S			+350	$^{\circ}\mathrm{C}$	
Cooling requirement		EN60068-2-1				
Dry heat requirement		EN60068-2-2				
Damp heat requirement		EN60068-2-30				
Shock and vibration		IEC/EN 6	1373 C1/Bo	ody Mounte	d Class B	



EMC Perf	formances			
	CE	EN50121-3-2	150kHz-500kHz 79dBuV	
EMI	CE	EN55016-2-1	500kHz-30MHz 73dBuV	
CIVII	RE	EN50121-3-2	30MHz-230MHz 40dBuV/m at 10m	
	NE.	EN55016-2-1	230MHz-1GHz 47dBuV/m at 10m	
	ESD	IEC/EN61000-4-2/GB/T 17626.2-2006	Contact ±6KV/Air ±8KV	perf. Criteria A
	RS	IEC/EN61000-4-3/GB/T 17626.3-2006	10V/m	perf. Criteria A
EMS	EFT	IEC/EN61000-4-4/GB/T 17626.4-2008	±2kV 5/50ns 5kHz	perf. Criteria A
	Surge	IEC/EN61000-4-5/GB/T 17626.5-2008	Line to line \pm 1KV (42 Ω , 0.5 μ F)	perf. Criteria A
	CS	IEC/EN61000-4-6/GB/T 17626.6-2008	0.15MHz-80MHz 10 Vr.m.s	perf. Criteria A

Physical Characteristics				
Case materials Metal base + plastic case in black, flame class UL94-V0				
Heat sink	Dimension 61.0x39.0x15.0 mm, weight 52g, aluminum, anodized black			
Cooling method	Conduction cooling or forced air cooling with fan			
Unit weight	Standard 72g, with heatsink 125g			

60

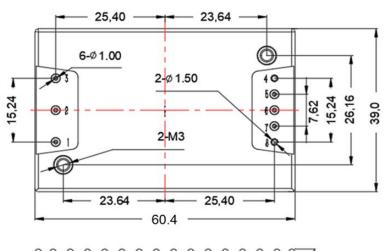

60

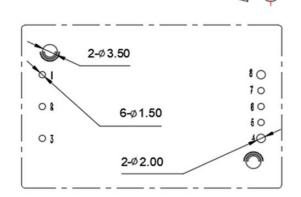
60

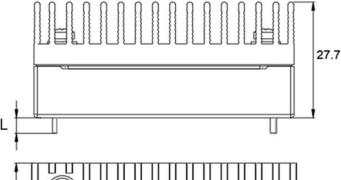
60

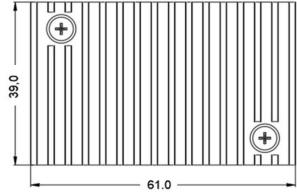
60

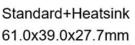
60


Note:


- 1. The output power and the efficiency in the graphs are tested with typical values.
- 2. The data in temperature derating graph is tested at Aipu laboratory test conditions. It is recommended to keep the temperature of the Metal base not more than 100 °C when the converter operates at the rated load for the application.

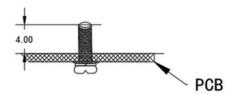



Mechanical Dimensions and Pin-Out Function Description



Recommended PCB holes size

Note: Unit: mm


Pin 1,2,3,5,6,7 diameter: 1.00

Pin 4,8 diameter: 1.50

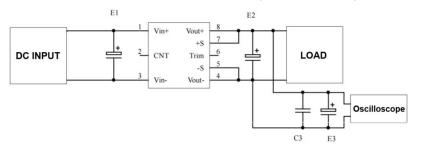
Tolerance: X.X ±0.50mm, X.XX ±0.10mm

Screwing torque: 0.4N.m Max

2-M3 0 Standard 60.4x39.0x12.7mm

Pin length L=3.7mm

Pin No.	1	2	3	4	5	6	7	8
Function	Vin+	CNT	Vin-	Vout-	-Sense	TRIM	+Sense	Vout+
Description	Input V+	ON/OFF	Input V-	Output V-	Output distal end	Output	Output distal end	Output V+
Description	iliput v+	Control	iliput v-	Output v-	compensation S-	Voltage Trim	compensation S+	Ουιραί ντ

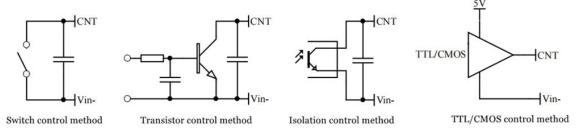


Recommended Circuits for Application

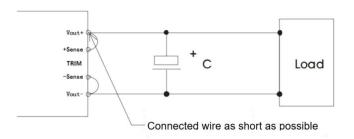
1. Ripple and Noise


All this series of converters will be tested according to the circuit diagram below before shipping.

Capacitance Output Volt.	E1 (µ F)	E2(µF)	C3 (µ F)	E3 (µ F)	
3. 3VDC		1000			
5VDC	100	680			
12VDC		470		10	
			1		
48VDC					
	CO	CO	1		
110VDC	68	68			


2. Typical application circuit

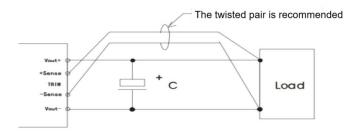
If this circuit recommended below is not adopted, please connect an electrolytic capacitor \geq 100 µF at the input to suppress the possible surge voltage.


F1	T3.15A/250V Time-delay fuse
RV1	14D 200V Varistor
C1, C2	105/250V Polyester Film Capacitor
CY1, CY2, CY3, CY4, CY5, CY6	472/250Vac Y2 capacitor
CY7, CY8	103/2KV Ceramic Capacitor
CY9	471/250Vac Y1 capacitor
E1	100μF/200V Electrolytic Capacitor
E2, E3	470μF/25V Electrolytic Capacitor
L1, L2	>8mH, temperature rise less than 25°@3A
L3	>4mH, temperature rise less than 25°@5A

3. ON/OFF control (CNT) application

4. Application for Sense

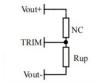
1) With NO distal end compensation



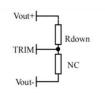
Notes:

- 1, Vout+ & Sense+, Vout- & Sense- should be shorted when distal compensation is not needed
- 2. The lead wire between Vout+ and Sense+, Vout- and Sense- should be as short as possible, and close to the pins, or else the output may be unstable

2) With distal end compensation


Notes:

- 1. The output voltage may be unstable if the compensation cables are too long.
- 2. The Twisted pair or shielded cables are recommended, the cable length should be as short as possible.
- 3. Wide copper path on PCB or thick lead wires between the power supply and the load should be used to achieve the line voltage drop <0.3V. The target is to keep output voltage within the specified range.
- 4. The leads wire resistance may create the output voltage oscillation or larger ripples. Please verify it before to use.
- 5. TRIM & TRIM resistance calculation


The calculation of $\triangle U$ and Rup & Rdown:

Rup=25/ \triangle U-5.1(K Ω)

Rdown= $10*(12-2.5-\triangle U)/\triangle U - 5.1(K\Omega)$

Voltage-up: Add Rup between Trim and Vout-

Voltage-down: Add Rdown between Trim and Vout+

6. This converter is not available for connecting in parallel to increase the output power. Please contact Aipu technician for this kind of requirement.

Others

- 1. The product warranty period is two years. The failed product can be repaired/replaced free of charge if it operates at normal condition. A paid service shall be also provided if the product fails after operating under wrong or unreasonable conditions.
- 2. Aipupower can provide customization design and filter modules for matching, please contact our technician for details.

Guangzhou Aipu Electron Technology Co., Ltd

Address: Building 4, HEDY Park, No.63, Punan Road, Huangpu Dist, Guangzhou, China.

Tel: 86-20-84206763 Fax: 86-20-84206762 HOTLINE: 400-889-8821

E-mail: sales@aipu-elec.com Website: www.aipupower.com